On Squared Bessel Particle Systems

نویسندگان

  • PIOTR GRACZYK
  • JACEK MAŁECKI
چکیده

We study the existence and uniqueness of solutions of SDEs describing squared Bessel particle systems in full generality. We define non-negative and non-colliding squared Bessel particle systems and we study their properties. Particle systems dissatisfying noncolliding and unicity properties are pointed out. The structure of squared Bessel particle systems is described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional Yamada-watanabe Theorem and Its Applications

Multidimensional and matrix versions of the Yamada-Watanabe theorem are proved. They are applied to particle systems of squared Bessel processes and to matrix analogues of squared Bessel processes: Wishart and Jacobi matrix processes.

متن کامل

Parameter Tuning for the NFFT Based Fast Ewald Summation

The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditions is possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT). In this paper we consider the particle-particle NFFT (P2NFFT) approach, which is based on the fast Fourier transform for nonequispaced data (NFFT) and compar...

متن کامل

Finite Parameter Model for Doubly-Selective Channel Estimation in OFDM

To describe joint timeand frequency-selective (doublyselective) channels in mobile broadband wireless communications, we propose to use the finite parameter model based on the same Bessel functions for each tap (Bessel model). An expression of channel estimation mean squared error (MSE) based on the finite parameter models in Orthogonal Frequency Division Multiplexing (OFDM) systems is derived....

متن کامل

Exact simulation of Bessel diffusions

We consider the exact path sampling of the squared Bessel process and some other continuous-time Markov processes, such as the CIR model, constant elasticity of variance diffusion model, and hypergeometric diffusions, which can all be obtained from a squared Bessel process by using a change of variable, time and scale transformation, and/or change of measure. All these diffusions are broadly us...

متن کامل

A Survey and Some Generalizations of Bessel Processes

Bessel processes play an important role in financial mathematics because of their strong relation to financial processes like geometric Brownian motion or CIR processes. We are interested in the first time Bessel processes and more generally, radial Ornstein–Uhlenbeck processes hit a given barrier. We give explicit expressions of the Laplace transforms of first hitting times by (squared) radial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017